题目

已知△ABC是等腰三角形,AB=AC. (1)特殊情形:如图1,当DE∥BC时,有DB      EC.(填“>”,“<”或“=”) (2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由. (3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数. 答案:【考点】几何变换综合题. 【分析】(1)由DE∥BC,得到,结合AB=AC,得到DB=EC; (2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE; (3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可. 【解答】解:(1)∵DE∥BC, ∴, ∵AB=AC, ∴DB=EC, 故答案为=, (2)成立. 证明:由①易知AD=AE, ∴由旋转性质可知∠DAB=∠EAC, 在△DAB和△EAC中 得 ∴△DAB≌△EAC, ∴DB=CE, (3)如图, 将△CPB绕点C旋转90°得△CEA,连接PE, ∴△CPB≌△CEA, ∴CE=CP=2,AE=BP=1,∠PCE=90°, ∴∠CEP=∠CPE=45°, 在Rt△PCE中,由勾股定理可得,PE=2, 在△PEA中,PE2=(2)2=8,AE2=12=1,PA2=32=9, ∵PE2+AE2=AP2, ∴△PEA是直角三角形 ∴∠PEA=90°, ∴∠CEA=135°, 又∵△CPB≌△CEA ∴∠BPC=∠CEA=135°.  
数学 试题推荐