题目
如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( ) A.80° B.100° C.110° D.130°
答案:D【考点】圆周角定理. 【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数. 【解答】解:连接OC,如图所示, ∵OB=OC, ∴∠OCB=∠OBC=40°, ∴∠BOC=100°, ∵∠1+∠BOC=360°, ∴∠1=260°, ∵∠A=∠1, ∴∠A=130°. 故选:D. 【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.