题目
如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( ) A.8 B.10 C.12 D.14
答案:B.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长. 解:∵四边形ABCD是平行四边形, ∴AD∥BC,DC=AB=6,AD=BC, ∴∠AFB=∠FBC, ∵BF平分∠ABC, ∴∠ABF=∠FBC, 则∠ABF=∠AFB, ∴AF=AB=6, 同理可证:DE=DC=6, ∵EF=AF+DE﹣AD=2, 即6+6﹣AD=2, 解得:AD=10; 故选: