题目
如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点. (1)求证:AB是⊙O的切线; (2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.
答案:(1)证明:连OC,如图, ∵OA=OB,CA=CB, ∴OC⊥AB, ∴AB是⊙O的切线; (2)解:∵D为OA的中点,OD=OC=r, ∴OA=2OC=2r, ∴∠A=30°,∠AOC=60°,AC= r, ∴∠AOB=120°,AB=2 r, ∴S阴影部分=S△OAB-S扇形ODE= •OC•AB- = - , ∴ •r•2 r- r2= - , ∴r=1, 即⊙O的半径r为1.