题目
如图所示,某空间中有四个方向垂直于纸面向里、磁感应强度的大小相同的、半径均为R的圆形匀强磁场区域1、2、3、4。其中1与4相切,2相切于1和3,3相切于2和4,且第1个磁场区域和第4个磁场区域的竖直方向的直径在一条直线上。一质量为m、电荷量为-q的带电粒子,静止置于电势差为U0的带电平行板(竖直放置)形成的电场中(初始位置在负极板附近),经过电场加速后,从第1个磁场的最左端水平进入,并从第3个磁场的最下端竖直穿出。已知tan22.5°=0.4,不计带电粒子的重力。 (1)求带电粒子进入磁场时的速度大小。 (2)试判断:若在第3个磁场的下面也有一电势差为U0的带电平行板(水平放置,其小孔在第3个磁场的最下端的正下方)形成的电场,带电粒子能否按原路返回?请说明原因。 (3)求匀强磁场的磁感应强度B。 (4)若将该带电粒子自该磁场中的某个位置以某个速度释放后恰好可在四个磁场中做匀速圆周运动,则该粒子的速度大小v′为多少?
答案: (1) (2)不能 (3) (4) [解析] (1)根据动能定理有:qU0=mv2 解得:v= (2)不能按原路返回,因为粒子进入第3个磁场下的电场后,向下减速至速度为零,然后反向加速至速度的大小为v,但进入磁场后,根据左手定则可知,带电粒子受到的洛伦兹力方向向右,粒子向右偏,故不能按原路返回。 (3)设带电粒子在磁场中做圆周运动的半径为r,如图甲所示,则根据几何关系可得: R=rtan22.5° 解得:r=2.5R 根据洛伦兹力提供向心力得:qvB= 解得:B= (4)该带电粒子在四个磁场中做匀速圆周运动,如图乙所示,由几何关系知其半径只能是R 根据洛伦兹力提供向心力得:qv′B= 解得:v′=