题目

某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元. (1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 答案:解:(1)依题意每天生产的伞兵个数为100-x-y, 所以利润w=5x+6y+3(100-x-y)=2x+3y+300.  (3分) 目标函数为w=2x+3y+300. 作出可行域.如图所示:   (8分) 初始直线l0∶2x+3y=0,平移初始直线经过点A时,w有最大值. 由 最优解为A(50,50),所以wmax=550元. 所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.  (12分)
数学 试题推荐