题目

设n∈N*且n>1,求证:(1)lgnlg(n+2)<lg2(n+1);(2)logn+1n<logn+2(n+1). 答案:证明:(1)∵n>1,∴lgn>0,lg(n+2)>0.∴lgn·lg(n+2)≤[]2=lg2(n2+2n)<lg2(n2+2n+1)=lg2(n+1).∴lgnlg(n+2)<lg2(n+1).(2)由(1)知lgnlg(n+2)<lg(n+1)lg(n+1),∴,即logn+1n<logn+2(n+1).
数学 试题推荐