题目

已知函数f(x)=2x-的定义域为(0,1](a为实数). (1)当a=1时,求函数y=f(x)的值域; (2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值. 答案:解:(1)当a=1时,f(x)=2x-,任取1≥x1>x2>0,则f(x1)-f(x2)=2(x1-x2)- =(x1-x2) . 因为1≥x1>x2>0,所以x1-x2>0,x1x2>0. 所以f(x1)>f(x2),所以f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值1,所以f(x)的值域为(-∞,1]. (2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;当a<0时,f(x)=2x+, 当≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a; 当<1,即a∈(-2,0)时,y=f(x)在上单调递减,在上单调递增,无最大值,当x=时取得最小值2.
数学 试题推荐