题目

下面各角能成为某多边形的内角的和的是(  )   A. 270° B. 1080° C. 520° D. 780° 答案:考点: 多边形内角与外角. 分析: 利用多边形的内角和公式可知,多边形的内角和是180度的整倍数,由此即可找出答案. 解答: 解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的整倍数, 在这四个选项中是180的整倍数的只有1080度. 故选B. 点评: 本题主要考查了多边形的内角和定理,是需要识记的内容.
数学 试题推荐