题目
(1)比较x6+1与x4+x2的大小,其中x∈R; (2)设a∈R,且a≠0,试比较a与的大小.
答案:(1)当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2.(2)当-1<a<0或a>1时,a>;当a<-1或0<a<1时,a<;当a=±1时,a=. 解析:(1)(x6+1)-(x4+x2) =x6-x4-x2+1=x4(x2-1)-(x2-1) =(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1) =(x2-1)2(x2+1). 当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2. (2)a-== 当-1<a<0或a>1时,a>;当a<-1或0<a<1时,a<;当a=±1时,a=.