题目
已知函数f(x)=xex(e为自然对数的底数).(1)求函数f(x)的单调递增区间;(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
答案:解:(1)∵f(x)=xex, ∴f′(x)=ex+xex=(x+1)ex. 令f′(x)>0,即(x+1)ex>0,∵ex>0,∴x>-1.∴函数f(x)的单调递增区间为(-1,+∞). (2)由(1)得f′(1)=(1+1)·e=2e,f(1)=e, ∴曲线y=f(x)在点(1,f(1))处的切线方程为y-e=2e(x-1),即2ex-y-e=0.