题目
如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为(_______).
答案:2n﹣1,0 【解析】 【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点An的坐标为(2n﹣1,0). 【详解】∵直线l为y=x,点A1(1,0),A1B1⊥x轴, ∴当x=1时,y=, 即B1(1,), ∴tan∠A1OB1=, ∴∠A1OB1=60°,∠A1B1O=30°, ∴OB1=2OA1=2, ∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2, ∴A2(2,0), 同理可得,A3(4,0),A4(8,0),…, ∴点An的坐标为(2n﹣1,0), 故答案为:2n﹣1,0. 【点睛】本题考查了规律题——点的坐标,一次函数图象上点的坐标特征等,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A1、A2、A3…的点的坐标是解决本题的关键.