题目

函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性并证明你的结论; (3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围. 答案:解:(1)∵对于任意x1,x2∈D, 有f(x1·x2)=f(x1)+f(x2), ∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0. (2)令x1=x2=-1,有f(1)=f(-1)+f(-1), ∴f(-1)=f(1)=0. 令x1=-1,x2=x有f(-x)=f(-1)+f(x), ∴f(-x)=f(x),∴f(x)为偶函数. (3)依题设有f(4×4)=f(4)+f(4)=2, 由(2)知,f(x)是偶函数, ∴f(x-1)<2⇔f(|x-1|)<f(16). 又f(x)在(0,+∞)上是增函数. ∴0<|x-1|<16,解之得-15<x<17且x≠1. ∴x的取值范围是{x|-15<x<17且x≠1}.
数学 试题推荐