题目
如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2). (1)求反比例函数的解析式; (2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围; (3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
答案:【考点】反比例函数综合题. 【分析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式; (2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围; (3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状. 【解答】解:(1)设反比例函数的解析式为y=(k>0), ∵A(m,﹣2)在y=2x上, ∴﹣2=2m, ∴m=﹣1, ∴A(﹣1,﹣2), 又∵点A在y=上, ∴k=2, ∴反比例函数的解析式为y=; (2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1; (3)四边形OABC是菱形. 证明:∵A(﹣1,﹣2), ∴OA==, 由题意知:CB∥OA且CB=, ∴CB=OA, ∴四边形OABC是平行四边形, ∵C(2,n)在y=上, ∴n=1, ∴C(2,1), OC==, ∴OC=OA, ∴四边形OABC是菱形.