题目

如图,直三棱柱ABC﹣A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.                                                                          (1)求证:C1E∥平面ADF;                                                                  (2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?                                                                           答案:【分析】(1)连接CE交AD于O,连接OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.由此能够证明C1E∥平面ADF.                                                                      (2)当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC﹣A1B1C1中,先证出AD⊥平面B1BCC1.再证明当BM=1时,平面CAM⊥平面ADF.                                                                         【解答】解:(1)连接CE交AD于O,连接OF.                                         因为CE,AD为△ABC中线,                                                                  所以O为△ABC的重心,.                                                  从而OF∥C1E.…(3分)                                                                       OF⊂面ADF,C1E⊄平面ADF,                                                                所以C1E∥平面ADF.…(6分)                                                             (2)当BM=1时,平面CAM⊥平面ADF.                                              在直三棱柱ABC﹣A1B1C1中,                                                                  由于B1B⊥平面ABC,BB1⊂平面B1BCC1,                                                所以平面B1BCC1⊥平面ABC.                                                                 由于AB=AC,D是BC中点,所以AD⊥BC.                                           又平面B1BCC1∩平面ABC=BC,                                                               所以AD⊥平面B1BCC1.                                                                          而CM⊂平面B1BCC1,于是AD⊥CM.…(9分)                                           因为BM=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,                                所以CM⊥DF. …(11分)                                                                    DF与AD相交,所以CM⊥平面ADF.                                                    CM⊂平面CAM,所以平面CAM⊥平面ADF.…(13分)                              当BM=1时,平面CAM⊥平面ADF.…(14分)                                           【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.                                                
数学 试题推荐
最近更新