题目
(2011贵州安顺,25,10分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.⑴说明四边形ACEF是平行四边形;⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
答案:(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF∥CA ∴∠AEF =∠EAC∵AF = CE =AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA∴△AEC≌△EAF,∴EF = CA,∴四边形ACEF是平行四边形 .(2)当∠B=30°时,四边形ACEF是菱形 .理由是:∵∠B=30°,∠ACB=90°,∴AC=,∵DE垂直平分BC,∴BE=CE又∵AE=CE,∴CE=,∴AC=CE,∴四边形ACEF是菱形.解析:略