题目
(21) (本小题满分12分) 已知函数的图象过点(-1,-6),且函数的图象关于y轴对称. (Ⅰ)求m、n的值及函数y=f(x)的单调区间; (Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
答案:(1)m=-3, n=0. f(x)的单调递增区间是(-∞,0),(2,+∞);f(x)的单调递减区间是(0,2)(2)当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值. 解析:(1)由函数f(x)图象过点(-1,-6),得m-n=-3, ……① 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n; 而g(x)图象关于y轴对称,所以-=0,所以m=-3, 代入①得n=0. 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表: X (-∞.0) 0 (0,2) 2 (2,+ ∞) f′(x) + 0 - 0 + f(x) 极大值 极小值 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.