题目
在正方体ABCD—A1B1C1D1中,P为DD1的中点,O为底面ABCD的中心,求证:B1O⊥平面PAC.
答案:证明:如图引进坐标系,不妨假定正方体每边长为2,则A(2,0,0),P(0,0,1),C(0,2,0),B1(2,2,2),O(1,1,0).于是=(1,1,2),=(-2,2,0),=(-2,0,1),由于及.∴OB1⊥AC,OB1⊥AP.∴OB1⊥平面PAC.启示:立体几何中的向量方法——“三步曲”.(1)建立立体图形与空间向量的联系,用空间向量表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的关系.(3)根据运算结果的几何意义来解释相关问题.