题目
(本小题满分12分) 已知函数,其中. (Ⅰ)若曲线在点处的切线方程为,求函数的解析式; (Ⅱ)讨论函数的单调性; (Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
答案:(Ⅰ) (Ⅱ)在,内是增函数,在,内是减函数. (Ⅲ) 解析:本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. (Ⅱ)解:. 当时,显然().这时在,上内是增函数. 当时,令,解得. 当变化时,,的变化情况如下表: + 0 - - 0 + ↗ 极大值 ↘ ↘ 极小值 ↗ 所以在,内是增函数,在,内是减函数. (Ⅲ)解:由(Ⅱ)知,在上的最大值为与的较大者,对于任意的,不等式在上恒成立,当且仅当,即,对任意的成立. 从而得,所以满足条件的的取值范围是.