题目

多项式x2+mx+5因式分解得(x+5)(x+n),则m= 6 ,n= 1 . 答案:考点: 因式分解的意义. 专题: 计算题. 分析: 将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可. 解答: 解:∵(x+5)(x+n)=x2+(n+5)x+5n, ∴x2+mx+5=x2+(n+5)x+5n ∴, ∴, 故答案为6,1. 点评: 本题考查了因式分解的意义,使得系数对应相等即可.  
数学 试题推荐