题目

已知函数,其中为实数. (1)若函数为定义域上的单调函数,求的取值范围. (2)若,满足不等式成立的正整数解有且仅有一个,求的取值范围. 答案:解:(1)由题意,当时,为减函数, 当时,, 若时,也为减函数,且, 此时函数为定义域上的减函数,满足条件; 若时,在上单调递增,则不满足条件. 综上所述,.…………………………………..4分 (2)由函数的解析式,可得, 当时,,不满足条件; 当时,为定义域上的减函数,仅有成立,满足条件; 当时,在上,仅有, 对于上,的最大值为, 不存在满足,满足条件; 当时,在上,不存在整数满足, 对于上,, 不存在满足,不满足条件;综上所述,
数学 试题推荐