题目
设函数f(x)=k为常数,e=2.718 28…是自然对数的底数). (1)当k≤0时,求函数f(x)的单调区间; (2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
答案:解:(1)函数y=f(x)的定义域为(0,+∞). 由k≤0可得ex-kx>0, 所以当x∈(0,2)时,f′(x)<0,函数y=f(x)单调递减, x∈(2,+∞)时,f′(x)>0,函数y=f(x)单调递增. 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k≤0时,函数f(x)在(0,2)内单调递减, 故f(x)在(0,2)内不存在极值点; 当k>0时,设函数g(x)=ex-kx,x∈[0,+∞), 因为g′(x)=ex-k=ex-eln k, 当0<k≤1时, 当x∈(0,2)时,g′(x)=ex-k>0,y=g(x)单调递增. 故f(x)在(0,2)内不存在两个极值点; 当k>1时,得x∈(0,ln k)时,g′(x)<0,函数y=g(x)单调递减. x∈(ln k,+∞)时,g′(x)>0,函数y=g(x)单调递增. 所以函数y=g(x)的最小值为g(ln k)=k(1-ln k). 函数f(x)在(0,2)内存在两个极值点当且仅当 综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.