题目

如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.       答案:数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD= AB,∵AC=2AB,∴AB=DC,∴△EAB≌△EDC,∴EB=EC,且∠AEB=∠AED=90°,∴∠DEC+∠BED=∠AED=∠BED=90°,∴BE⊥ED.解析:略 
数学 试题推荐