题目

若实数a,b满足a+b2=1,则a2+b2的最小值是      .                        答案: .                                                                                                 【考点】配方法的应用;非负数的性质:偶次方.                                          【分析】由a+b2=1,得出b2=1﹣a,代入得到a2+b2=a2+1﹣a,利用配方法即可求解.                  【解答】解:∵a+b2=1,                                                                          ∴b2=1﹣a,                                                                                        ∴a2+b2=a2+1﹣a=(a﹣)2+≥,                                                         ∴当a=时,a2+b2有最小值.                                                               故答案为.                                                                                       【点评】本题考查了配方法的应用,非负数的性质,将b2=1﹣a代入得到a2+b2=a2+1﹣a是解题的关键.                                                                                                                        
数学 试题推荐