题目
设函数f(x)=|x﹣a|+3x,其中a>0. (Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集 (Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.
答案:考点:绝对值不等式的解法. 专题:计算题;压轴题;分类讨论. 分析:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可. (Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值. 解答: 解:(Ⅰ)当a=1时,f(x)≥3x+2可化为 |x﹣1|≥2. 由此可得x≥3或x≤﹣1. 故不等式f(x)≥3x+2的解集为 {x|x≥3或x≤﹣1}. (Ⅱ)由f(x)≤0得 |x﹣a|+3x≤0 此不等式化为不等式组 或 即或 因为a>0,所以不等式组的解集为{x|x} 由题设可得﹣=﹣1,故a=2 点评:本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.