题目

已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.   答案:证明:∵BD⊥AC,CE⊥AB              ∴∠ADB=∠AEC=90°          在△ABD和△ACE中                                     ∠ADB=∠AEC             ∠A=∠A                                                AB=AC                                   ∴△ABD≌△ACE(AAS) ∴AD=AE    ∵AB=AC                                  ∴AB-AE=AC-AD即AB=AC      
数学 试题推荐
最近更新