题目

如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  )   A. 50° B. 40° C. 60° D. 70° 答案:考点: 切线的性质;圆周角定理. 分析: 连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数. 解答: 解:连接OC,如图所示: ∵圆心角∠BOC与圆周角∠CDB都对弧BC, ∴∠BOC=2∠CDB,又∠CDB=20°, ∴∠BOC=40°, 又∵CE为圆O的切线, ∴OC⊥CE,即∠OCE=90°, 则∠E=90°﹣40°=50°. 故选A. 点评: 此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.  
数学 试题推荐