题目

如图,在中,,以为直径作,过点C作直线交的延长线于点D,使. (1)求证:为的切线; (2)若平分,且分别交于点,当时,求的长. 答案:(1)见解析;(2)EF=. 【解析】(1)如图,连接OC,欲证明CD是的切线,只需求得∠OCD=; (2)由角平分线及三角形外角性质可得,即∠CEF=∠CFE,根据勾股定理可求得EF的长. 【详解】 (1)证明:如图,连接OC ∵为的直径 ∴,即∠A+∠ABC= 又∵OC=OB ∴∠ABC=∠OCB ∵ ∴∠BCD+∠OCB=,即∠OCD= ∵OC是圆O的半径 ∴CD是的切线. (2)解:∵平分 ∴∠CDE=∠ADE 又∵ ∴,即∠CEF=∠CFE ∵∠ACB=, ∴CE=CF=2 ∴EF= 【点睛】此题主要考查切线的判定方法、角平分线及三角形外角性质和勾股定理,熟练进行推理论证是解题关键.
数学 试题推荐