题目

(2009安徽卷文)(本小题满分12分) 已知椭圆(a>b>0)的离心率为,以原点为圆心。椭圆短半轴长半径的 圆与直线y=x+2相切, (Ⅰ)求a与b;       (Ⅱ)设该椭圆的左,右焦点分别为和,直线过且与x轴垂直,动直线与y轴垂直,交与点p..求线段P垂直平分线与的交点M的轨迹方程,并指明曲线类型。 答案:【思路】(1)由椭圆建立a、b等量关系,再根据直线与椭圆相切求出a、b. (2)依据几何关系转化为代数方程可求得,这之中的消参就很重要了。 【解析】(1)由于  ∴  ∴  又  ∴b2=2,a2=3因此,.        (2)由(1)知F1,F2两点分别为(-1,0),(1,0),由题意可设P(1,t).(t≠0).那么线段PF1中点为,设M(x、y)是所求轨迹上的任意点.由于则消去参数t得 ,其轨迹为抛物线(除原点)
数学 试题推荐