题目

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q; (Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围. 答案:解:(Ⅰ)由题意知, 所以. 即. 又因为, 所以a2=4,b2=3. 故椭圆C的方程为. (Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x﹣4). 由得(4k2+3)x2﹣32k2x+64k2﹣12=0.① 设点B(x1,y1),E(x2,y2),则A(x1,﹣y1). 直线AE的方程为. 令y=0,得. 将y1=k(x1﹣4),y2=k(x2﹣4)代入, 整理,得.② 由①得,代入② 整理,得x=1. 所以直线AE与x轴相交于定点Q(1,0). (Ⅲ)当过点Q直线MN的斜率存在时,设直线MN的方程为y=m(x﹣1),且M(xM,yM),N(xN,yN)在椭圆C上. 由得(4m2+3)x2﹣8m2x+4m2﹣12=0. 易知△>0. 所以,,. 则=. 因为m2≥0,所以. 所以. 当过点Q直线MN的斜率不存在时,其方程为x=1. 解得,N(1,)或M(1,)、N(1,﹣). 此时. 所以的取值范围是.
数学 试题推荐