题目
如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E. ⑴求A、B、C三个点的坐标. ⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN. ①求证:AN=BM. ②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值. x
答案:解:⑴令, 解得:, ∴A(-1,0),B(3,0)···························· 2分 ∵=, ∴抛物线的对称轴为直线x=1, 将x=1代入,得y=2, ∴C(1,2). ································· 3分 ⑵①在Rt△ACE中,tan∠CAE=, ∴∠CAE=60º, 由抛物线的对称性可知l是线段AB的垂直平分线, ∴AC=BC, ∴△ABC为等边三角形, ∴AB= BC =AC = 4,∠ABC=∠ACB= 60º, 又∵AM=AP,BN=BP, ∴BN = CM, ∴△ABN≌△BCM, ∴AN=BM. ②四边形AMNB的面积有最小值. 设AP=m,四边形AMNB的面积为S, 由①可知AB= BC= 4,BN = CM=BP,S△ABC=×42=, ∴CM=BN= BP=4-m,CN=m, 过M作MF⊥BC,垂足为F, 则MF=MC•sin60º=, ∴S△CMN==•=,······················· 7分 ∴S=S△ABC-S△CMN =-() = ∴m=2时,S取得最小值3.