题目
已知数列{an}满足a1=33,an+1﹣an=2n,则的最小值为 .
答案: . 【考点】数列递推式;基本不等式在最值问题中的应用. 【分析】由累加法求出an=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值. 【解答】解:an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n 所以 设f(n)=,令f′(n)=, 则f(n)在上是单调递增,在上是递减的, 因为n∈N+,所以当n=5或6时f(n)有最小值. 又因为,, 所以的最小值为