题目
如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( ) A.平行 B.相交 C.垂直 D.平行、相交或垂直
答案:A【解答】解:∵∠AOB=60°,OA=OB, ∴△OAB是等边三角形, ∴OA=AB,∠OAB=∠ABO=60° ①当点C在线段OB上时,如图1, ∵△ACD是等边三角形, ∴AC=AD,∠CAD=60°, ∴∠OAC=∠BAD, 在△AOC和△ABD中,, ∴△AOC≌△ABD, ∴∠ABD=∠AOC=60°, ∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB, ∴BD∥OA, ②当点C在OB的延长线上时,如图2, 同①的方法得出OA∥BD, ∵△ACD是等边三角形, ∴AC=AD,∠CAD=60°, ∴∠OAC=∠BAD, 在△AOC和△ABD中,, ∴△AOC≌△ABD, ∴∠ABD=∠AOC=60°, ∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB, ∴BD∥OA, 故选:A.