题目
已知点列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…An是线段An-2An-1的中点,…, (1)写出xn与xn-1、xn-2之间的关系式(n≥3); (2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.
答案: 由此推测an=(-)n-1a(n∈N*). 证法1:因为a1=a>0,且 an=xn+1-xn=-xn==-(xn-xn-1)=-an-1(n≥2), 所以an=(-)n-1a. 证法2:用数学归纳法证明: (1)当n=1时,a1=x2-x1=a=(-)0a,公式成立. (2)假设当n=k时,公式成立,即ak=(-)k-1a成立.那么当n=k+1时, ak+1=xk+2-xk+1=-xk+1=-(xk+1-xk)=-ak=-(-)k-1a=(-)(k+1)-1a,公式仍成立,根据(1)和(2)可知,对任意n∈N*,公式an=(-)n-1a成立.