题目
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列,{bn}的前n项和为Sn,且Sn=2n+1-2. (1)求数列{an}、{bn}的通项公式; (2)设cn=abn,求数列{cn}的前n项和Tn.
答案:解析: (1)∵a1,a3,a7成等比数列,∴a=a1·a7, 设等差数列{an}的公差为d,则(2+2d)2=2(2+6d),d>0, ∴d=1,an=n+1. 又Sn=2n+1-2,b1=S1=2,当n≥2时,bn=Sn-Sn-1=2n+1-2-2n+2=2n,经检验,n=1适合此式, ∴bn=2n. (2)∵cn=abn=2n+1, ∴Tn=(2+1)+(22+1)+…+(2n+1) =(2+22+…+2n)+n =2n+1-2+n.