题目

已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R. (Ⅰ)讨论f(x)的单调性; (Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围; (Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围. 答案:考点: 利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性. 专题: 综合题;压轴题. 分析: (Ⅰ)f(x)的定义域为(0,+∞),且,当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;当a>0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a.由此能够判断f(x)的单调性. (Ⅱ)由g(x)=ax﹣,定义域为(0,+∞),知﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,由此能够求出正实数a的取值范围. (Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0当x时,g′(x)<0.所以在(0,1)上,,由此能求出实数m的取值范围. 解答: 解:(Ⅰ)f(x)的定义域为(0,+∞),且, ①当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增; ②当a<0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a; 故f(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增. (Ⅱ)g(x)=ax﹣,g(x)的定义域为(0,+∞), ﹣=, 因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0, ∴ax2﹣5x+a≥0, ∴a(x2+1)≥5x, 即, ∴. ∵,当且仅当x=1时取等号, 所以a. (Ⅲ)当a=2时,g(x)=2x﹣,, 由g′(x)=0,得x=或x=2. 当时,g′(x)≥0;当x时,g′(x)<0. 所以在(0,1)上,, 而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于 “g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值” 而h(x)在[1,2]上的最大值为max{h(1),h(2)}, 所以有, ∴, ∴, 解得m≥8﹣5ln2, 所以实数m的取值范围是[8﹣5ln2,+∞). 点评: 本题考查在闭区间上求函数最值的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
数学 试题推荐