题目

已知点P(2,0)及⊙C:x2+y2-6x+4y+4=0.(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;(2)设过点P的直线与⊙C交A、B两点,当|AB|=4时,求以线段AB为直径的圆的方程. 答案:解析:(1)依题意,⊙C标准方程为(x-3)2+(y+2)2=9.设所求直线l的方程为y=k(x-2)(斜率存在),由圆心到直线的距离d==1.解得k=-,∴l的方程为3x+4y-6=0.又当l的斜率不存在时,也满足题意,此时l的方程为x=2,故所求直线l的方程为3x+4y-6=0或x=2.(2)解法一:由平面几何知识,当|AB|=4时,圆心C(3,-2)到直线AB的距离d=,又|PC|=,∴CP⊥AB,P为弦AB的中点.故以线段AB为直径的圆的方程是(x-2)2+y2=4.解法二:若直线AB的斜率不存在,即直线为x=2,此时|AB|=42,不合题意,故可设直线AB方程为y=k(x-2),由圆心C到直线AB的距离d==,解得k=.将y=x-1代入x2+y2-6x+4y+4=0并整理,得5x2-20x+4=0.∴AB中点横坐标x0==2,从而y0=0.故以线段AB为直径的圆的方程是(x-2)2+y2=4.
数学 试题推荐