题目
如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF. (1)求证:AE=BF. (2)若正方形边长是5,BE=2,求AF的长.
答案:【分析】(1)根据ASA证明△ABE≌△BCF,可得结论; (2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长. 【解答】(1)证明:∵四边形ABCD是正方形, ∴AB=BC,∠ABE=∠BCF=90°, ∴∠BAE+∠AEB=90°, ∵BH⊥AE, ∴∠BHE=90°, ∴∠AEB+∠EBH=90°, ∴∠BAE=∠EBH, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴AE=BF; (2)解:∵AB=BC=5, 由(1)得:△ABE≌△BCF, ∴CF=BE=2, ∴DF=5﹣2=3, ∵四边形ABCD是正方形, ∴AB=AD=5,∠ADF=90°, 由勾股定理得:AF====. 【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.