题目
20. 已知正项数列,其前n项和Sn满足10Sn=an2+5an+6,且a1,a3,a15成等比数列,求数列的通项an.
答案:∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6, 解之得a1=2或a1=3.又10Sn-1=an-12+5an-1+6(n≥2), ②由①-②得 10an=(an2-a n-12)+5(an-an-1), 即(an+an-1)(an-an-1-5)=0.∵an+an-1>0, ∴an-an-1=5(n≥2).当a1=3时,a2=13,an=73,a1,a2,an不成等比数列,a1≠3.当a1=2时,a2=12,an=72,有a32=a1a2,∴a1=2,∴an=5n-3.