题目
学校数学兴趣小组利用机器人开展数学活动. 在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计. 兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种. 【观察】 ①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为 个单位长度; ②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为 个单位长度; 【发现】 设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了y与x的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示). ①a= ; ②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象; 【拓展】 设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度. 若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是 .(直接写出结果)
答案:解:【观察】①∵相遇地点与点A之间的距离为30个单位长度, ∴相遇地点与点B之间的距离为150﹣30=120个单位长度, 设机器人甲的速度为v, ∴机器人乙的速度为v=4v, ∴机器人甲从相遇点到点B所用的时间为, 机器人乙从相遇地点到点A再返回到点B所用时间为=,而, ∴设机器人甲与机器人乙第二次迎面相遇时, 机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇, 设此时相遇点距点A为m个单位, 根据题意得,30+150+150﹣m=4(m﹣30), ∴m=90, 故答案为:90; ②∵相遇地点与点A之间的距离为40个单位长度, ∴相遇地点与点B之间的距离为150﹣40=110个单位长度, 设机器人甲的速度为v, ∴机器人乙的速度为v=v, ∴机器人乙从相遇点到点A再到点B所用的时间为=, 机器人甲从相遇点到点B所用时间为,而, ∴设机器人甲与机器人乙第二次迎面相遇时,机器人从第一次相遇点到点A,再到点B,返回时和机器人乙第二次迎面相遇, 设此时相遇点距点A为m个单位, 根据题意得,40+150+150﹣m=(m﹣40), ∴m=120, 故答案为:120; 【发现】①当点第二次相遇地点刚好在点B时, 设机器人甲的速度为v,则机器人乙的速度为v, 根据题意知,x+150=(150﹣x), ∴x=50, 经检验:x=50是分式方程的根, 即:a=50, 故答案为:50; ②当0<x≤50时,点P(50,150)在线段OP上, ∴线段OP的表达式为y=3x, 当v<v时,即当50<x<75,此时,第二次相遇地点是机器人甲在到点B返回向点A时, 设机器人甲的速度为v,则机器人乙的速度为v, 根据题意知,x+y=(150﹣x+150﹣y), ∴y=﹣3x+300, 即:y=, 补全图形如图2所示, 【拓展】如图,由题意知,x+y+150+150=(150﹣x+150﹣y), ∴y=﹣5x+300, ∵第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度, ∴﹣5x+300≤60, ∴x≥48, ∵x<75, ∴48≤x<75, 故答案为48≤x<75.