题目

F1、F2为双曲线-y2=-1的两个焦点,点P在双曲线上,且∠F1PF2=90°,则△F1PF2的面积是A.2                              B.4                              C.8                              D.16 答案:解析:双曲线-y2=-1的两个焦点是F1(0,-)、F2(0,),∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2,即|PF1|2+|PF2|2=20.                                                                                                     ①∵|PF1|-|PF2|=±2,∴|PF1|2-2|PF2|·|PF1|+|PF2|2=4.                                                                                ②①-②,得2|PF1|·|PF2|=16.∴S=|PF1|·|PF2|=4.答案:B
数学 试题推荐