题目
如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F. (1)填空:∠AFC=______度; (2)求∠EDF的度数.
答案:【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题). 【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案; (2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案. 【解答】解:(1)∵△ABD沿AD折叠得到△AED, ∴∠BAD=∠DAF, ∵∠B=50°∠BAD=30°, ∴∠AFC=∠B+∠BAD+∠DAF=110°; 故答案为110. (2)∵∠B=50°,∠BAD=30°, ∴∠ADB=180°﹣50°﹣30°=100°, ∵△ABD沿AD折叠得到△AED, ∴∠ADE=∠ADB=100°, ∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.