题目
如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E. (1)求证:△OAD≌△EAB; (2)求过点O、E、B的抛物线所表示的二次函数解析式; (3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标; (4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.
答案:考点: 二次函数综合题. 分析: (1)证明IF⊥OD,进而得到∠FED=∠EBA;又因为DA=BA,且∠OAD=∠EAB=90°,故可证明△OAD≌△EAB; (2)首先求出点B、E的坐标,然后利用待定系数法求出抛物线的解析式; (3)由于直线BD与x轴关于直线BF对称,则抛物线与直线BD的交点即为所求之点P.分别求出抛物线与直线BD的解析式,联立解方程,即可求出交点(点P)的坐标; (4)首先证明△OED是顶角为135°的等腰三角形,若△BMD与△OED相似,则△BMD必须是等腰三角形.如答图2所示,在直线BF上能使△BMD为等腰三角形的点M有4个,分别记为M1,M2,M3,M4,其中符合题意的是点M1,M3. 解答: (1)证明:如答图1所示,连接ID,IO, ∵I为△BOD的外心,∴IO=ID, 又F为OD的中点,∴IF⊥OD. ∴∠DEF+∠FDE=∠AEB+∠ABE=90°,又∠DEF=∠AEB, ∴∠FED=∠EBA.而DA=BA,且∠OAD=∠EAB=90°, ∴△OAD≌△EAB. (2)解:由(1)知IF⊥OD,又BF为中线, ∴BO=BD=AB=2, ∴OA=BO﹣AB=2﹣. 由(1)知△OAD≌△EAB,∴AE=OA=2﹣, ∴E(2﹣,2﹣),B(2,0). 设过点O、B、E的抛物线解析式为y=ax2+bx, 则有, 解得, ∴抛物线的解析式为:y=x2+x. (3)解:∵直线BD与x轴关于直线BF对称, ∴抛物线与直线BD的交点,即为所求之点P. 由(2)可知,B(2,0),D(2﹣,),可得直线BD的解析式为y=﹣x+2. ∵点P既在直线y=﹣x+2上,也在抛物线y=x2+x上, ∴﹣x+2=x2+x,解此方程得:x=2或x=, 当x=2时,y=﹣x+2=0;当x=时,y=﹣x+2=2﹣, ∴点P的坐标为(2,0)(与点B重合),或(,2﹣). (4)解:∵DBO=45°,BD=BO,BF⊥OD, ∴∠EBA=22.5°,由(1)知∠ODA=22.5°,故∠DOA=67.5°,OA=EA, ∴∠EOA=45°,∠DOE=22.5°,即△OED是顶角为135°的等腰三角形. 若△BMD与△OED相似,则△BMD必须是等腰三角形. 如答图2所示,在直线BF上能使△BMD为等腰三角形的点M有4个,分别记为M1,M2,M3,M4,其中符合题意的是点M1,M3. ∵DM1=DB=2,OA=2﹣,∴M1(﹣,). 由(1)知B(2,0),E(2﹣,2﹣),故直线BE的解析式为y=(1﹣)x﹣2+. I是△BOD的外心,它是OB的垂直平分线x=1与OD的垂直平分线BE的交点, ∴I(1,﹣1),即M3(1,﹣1). 故符合题意的M点的坐标为(﹣,),(1,﹣1). 点评: 本题考查了二次函数综合题型:第(1)问涉及全等三角形的证明;第(2)问涉及利用待定系数法求一次函数与二次函数的解析式;第(3)问涉及轴对称知识,以及抛物线与一次函数的交点问题;第(4)问涉及相似三角形的判定,以及点的坐标的确定与计算.本题涉及考点众多,难度较大,对数学能力要求较高.