题目
已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3,…),数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.(Ⅰ)求数列{an},{bn}的通项an和bn;(Ⅱ)记Sn=a1b1+a2b2+…+anbn,求满足Sn<167的最大正整数n.
答案:解:(Ⅰ)∵Sn=2an-2,Sn-1=2an-1-2,又Sn-Sn-1=an(n≥2,n∈N*)∴an=2an-2an-1,∵an≠0∴=2(n≥2,n∈N*),即数列{an}是等比数列.∵a1=S1,∴a1=2a1-2,即a1=2.∴an=2n∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0∴bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1(Ⅱ)Sn=a1b1+a2b2+…anbn=1×2+3×22+5×23+…+(2n-1)2n,∴2Sn=1×22+3×23+…+(2n-3)2n+(2n-1)2n+1因此:-Sn=1×2+(2×22+2×23+…+2×2n)-(2n-1)2n+1即:-Sn=1×2+(23+24+…+2n+1)-(2n-1)2n+1∴Sn=(2n-3)2n+2+6(10分)∵Sn<167,即:(2n-3)·2n+1+6<167,于是(2n-3)·2n+1<161又由于当n=4时(2n-3)·2n+1=(2×4-3)·25=160,当n=5时(2n-3)·2n+1=(2×5-3)·26=448,故满足条件Sn<167的最大正整数n为4