题目

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元). (1)求y与x之间的函数关系式,自变量x的取值范围; (2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? 答案:【考点】二次函数的应用. 【分析】(1)根据数量乘以单位的利润,等于总利润,可得答案; (2)根据二次函数的性质,可的大啊俺. 【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600, 则y=﹣2x2+120x﹣1600.  由题意,有,解得20≤x≤40. 故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40; (2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200, ∴当x=30时,y有最大值200. 故当销售价定为30元/千克时,每天可获最大销售利润200元;  
数学 试题推荐
最近更新