题目

设函数f(x)=ax+sinx+cosx的图象上存在两条切线垂直,则a的值是            . 答案:0.【解析】f(x)=ax+sin(x+),f ′(x)=a+cos(x+)由题设可知存在x1,x2使(a+cos(x1+))(a+cos(x2+))=-1,不妨设-cos(x1+)<-cos(x2+),则(a+cos(x1+))(a+cos(x2+))=-1<0得,-cos(x1+)<a<-cos(x2+),所以-1=(a+cos(x1+))(a+cos(x2+))≥(a+1)(a-1)=a2-1.故a=0.
数学 试题推荐