题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2. (1)求证:f(x)是周期函数; (2)当x∈[2,4]时,求f(x)的解析式; (3)计算f(0)+f(1)+f(2)+…+f(2 012).
答案:解:(1)∵f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x). ∴f(x)是周期为4的周期函数. (2)当x∈[-2,0]时,-x∈[0,2],由已知得 f(-x)=2(-x)-(-x)2=-2x-x2, 又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2, ∴f(x)=x2+2x. 又当x∈[2,4]时,x-4∈[-2,0], ∴f(x-4)=(x-4)2+2(x-4). 又f(x)是周期为4的周期函数, ∴f(x)=f(x-4) =(x-4)2+2(x-4) =x2-6x+8. 从而求得x∈[2,4]时,f(x)=x2-6x+8. (3)f(0)=0,f(2)=0, f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)=0. ∴f(0)+f(1)+f(2)+…+f(2 012)=0.