题目

 如图,在△ABC中,BD、CD是内角平分线,BP、CP是∠ABC、∠ACB的外角平分线,分别交于D、P.(1)       若∠A = 30°,求∠BDC和∠BPC的度数.(2)       不论∠A怎样变化,探索∠BDC +∠BPC的值是否有所变化?请说明理由.  答案:(1),(2)见解析解析:解:(1) ∵       ∴ ∵ BD、CD分别平分∠ABC、∠ACB∴ ∴ ························ 1分∴ ····················· 2分∵ ,BP、CP分别是∠ABC、∠ACB的外角平分线∴ ∴ ··················· 3分∴ ····················· 4分(2) 的值不变理由:∵ BD平分∠ABC,BP平分∠EBC∴∴ ,即······································· 6分同理可得:∴ ·········· 8分∴ 的值不变利用三角形内角和定理和角平分线求解 
数学 试题推荐