题目

如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结 (1)求证: (2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由. 答案:(1)证明:∵四边形为正方形,∴ ∵三角板是等腰直角三角形,∴ 又三角板绕点逆时针旋转至的位置时, ∴ (2)存在. ∵ ∴过点与平行的直线有且只有一条,并与垂直, 又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上, ····················· 5分 ∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和 此时,点分别在点和点,满足 当切点在第二象限时,点在第一象限, 在直角三角形中, ∴∴ ∴点的横坐标为: 点的纵坐标为: ∴点的坐标为 当切点在第一象限时,点在第四象限, 同理可求:点的坐标为 综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或
数学 试题推荐