题目
(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少?(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
答案:(1)y=-x2+2x+3,D(1,4)(3分);(2)当P点坐标为(,-)时,线段PQ最长为(2分);(3)(1,0),(2,1),(0,-1),(3,2)(4分) 解析:略